
A-A32717 INTERFACE SPECIFICATIONS FOR THE SCR (A7E) APPLICATON 1/1
DATA TYPES MODULE(U) NAVAL RESEARCH LAB WASHINGTON DC
P CCEMENTSET AL 23 AUG83 NRL-8734

UNCLASIE FG /2N l

EEEEmmhhmohhEmhE
mEmmhhEEFmm

1.8

IIIJIL25t1I116

MICROCOPY RESOLUTION TEST CHART

94ATMONAL SMOEAU Of STANAO~fDS -$3 -A

IN C. CLUMUNMI 11. FML, AM~ D0 . VA~.

ovellil AC.

Awmt 2,93v

II

_ _ -7
SECURITY CLASSIFICATION OF THIS PAGE (When Del. EnI.,.d)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
REPORT__ DOCUMENTATIONPAGE_ BEFORE COMPLETING FORM

I REP1RT NUMBER 2. GOVT ACCESSION NO. 3 RECIPIENT'S CATALOG NUMBER

NRL Report 8734

6. TITLE (and S..btif.) S. TYPE OF REPORT 6 PERIOD COVERED

Interim report on a continuing
INTERFACE SPECIFICATIONS FOR THE SCR (A-7E) _ NRL problem

APPLICATION DATA TYPES MODULE . PERFORMING ORG. REPORT NUMsER

7. AUTNOR(@) B- CONTRACT OR GRANT NUMUER(€)

P.C. Clements, S.R. Faulk, and D.L. Parnas*

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10 PROGRAM ELEMENT. PROJECT. TASK
AREA I WORK UNIT NUMBERS

Naval Research Laboratory 62721N; XF21242101;
Washington, DC 20375 75-0106-0-3

It- CONTROLLING OFFICE NAME AND ADDRESS Il. REPORT DATE

August 23, 1983
I). NUMBER OF PAGES

31
14. MONITORING AGENCY NAME a ADDRES$(I f dof(.r(froG C.tvollME Ollce) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED
IS. OCCL ASSIFI CATION/DOWNGRADING

SCH EDULE

I6. DISTRIBUTION STATEMENT (of ths Repert

Approved for public release; distribution unlimited.

I?. DISTRIBUTION STATEMENT (of the aberact entered in Block 20. It diforwt froom Report)

lB. SUPPLEMENTARY NOTES

*Also at University of Victoria, Victoria, B.C.

19. KEY WORDS (Continue on revese aide II neceee and Identlli by block nuamber)

Abstract data types Modular decomposition Software maintenance
Abstract interfaces Modules Software specifications
Avionics software Real-time systems
Information hiding Software engineering

S0. ABSTRACT (Conoltm,. OR few"&& ol.e nwei wvso ind IdentfIy by Block nuawb*&)

This report describes the programmer interface to a set of avionics-oriented abstract data
types implemented in software. The Application Data Types module is part of NRL's Software
Cost Reduction (SCR) project, to demonstrate the feasibility of applying advanced software
engineering techniques to complex real-time systems to simplify maintenance. The Application
Data Types module allows operations on data independent of the representation. In the case of

(Continued)

DD O 1473 EDITION O' 1 NOV5G IS OBSOLETE
S/N 0102-014- 6601

SECURITY CLASSIFICATION OF THIS PAGE (Whom Date Wftered)

SECURITY CLASSIFICATION OF THIS PAGE (when D.. Enfe.-dj

20. ASTRACT (Continuhd)

- numeric abstract types, which represent physical quantities such as speed or distance, arithmetic
operations may be performed independent of the units of physical measure. This allows the rest
of the application software to remain unchanged even when representation decisions change
about these data.

This report contains the abstract interface specifications for all of the facilities provided to
users by this module. It serves as development and maintenance documentation for the SCR
software design, and it is also intended as a model for other people interested in applying the
abstract interface approach on other software projects.

SECURITY CLASSIFICATION OF THIS PAGEMhen Dnt rntemt)

ii

CONTENTS

AT.INTRO- INTRODUCTION .. I

AT.NUM-NUMERIC ABSTRACT DATA TYPES AND OPERATIONS 3

AT.STE-STATE TRANSITION EVENT TYPE CLASS........................... 12

AT.INDEX -INDICES TO THE DOCUMENT...................................... 19

ACKNOWLEDGMENTS ... 22

REFERENCES ... 22

APPENDIX 1-Interface Design Issues ... 23

APPENDIX 2 -Implementation Notes .. 26

APPENDIX 3-Basic Assumptions .. 27

APPENDIX 4-Unimplemented Application Data Type Facilities 29

APPENDIX 5-Data Representation (Version) Catalog............................ 30

Aocess on ifor
NTI1S GRA&I

1-TAS r

:Ava, anzd/or

t~ ya

iii

INTERFACE SPECIFICATIONS FOR THE SCR (A-7E)
APPLICATION DATA TYPES MODULE

INTRODUCTION

This report specifies the abstract interfaces for a software module that forms part of the Opera-
tional Flight Program for the Navy's A-7E aircraft. As the demonstration vehicle for the Naval
Research Laboratory's Software Cost Reduction (SCR) project, the program is being designed and
implemented in accordance with modern software engineering principles such as information-hiding,
cooperating sequential processes, and abstract data typing.

The basic computing environment for the application software is provided by the Extended Com-
puter module, specified in reference [EC]. The Extended Computer interface provides all the facilities
necessary for handling data, as well as input/output (i/o), sequence, and process control.

Overview

The application Data Types (ADT) module provides facilities for handling those data types which
(a) are useful to the application at hand (in this case, an embedded real-time avionics program); and
(b) can be implemented independently of the host computer, i.e., are not provided by the Extended
Computer Module.

Although the type classes provided by the module are fixed, operations are available to specify
specific types within a type class, and to create and manipulate data objects of each type. The module
comprises two submodules:

(1) Numeric Type Classes. This submodule provides those numeric data type classes that are
considered to be generally useful to avionics applications; these type classes are used to represent physi-
cal quantities: acceleration (both scalar and vector), angle, angular rate, density, displacement, distance,
pressure, speed, and velocity. Facilities are provided that allow manipulation of such quantities without
regard to the units of measurement.

(2) State Transition Event (STE) Type Class. This submodule allows programs to create and
operate on data types described as finite state machines. The domain of an STE variable is a set of
states. The changing of a variable's state is an event that can be signaled and awaited.

Reader Prerequisites

This report is a companion to Chapter EC.DATA of [EC], and it is assumed that the reader is
familiar with that chapter, particularly the notion of type classes, specific types, and other terminology
used therein. The ADT interfaces are modeled after that submodule of the Extended Computer. To
present as concise a document as possible, we frequently refer to that chapter rather that duplicate
information that appears there.

This report follows the standard organization presented in [SO], as modified in the Introduction to
(EC1, and readers should also be familiar with that.

Manuscript approved April 19, 1983.

, -
-- -~---

CLEMENTS, FAULK, AND PARNAS

Referring to the Extended Computer

When a reference is made to Chapter EC.DATA of [EC], the following rules apply:

(1) If the reference is made to an ECDATA access program, then the name of the ADT
access program that is being specified, as well as the parameters, parameter meanings,
parameter requirements, undesired events, undesired event dictionary definitions, and
program effects will be the same as those given for the access program in EC.DATA,
except as noted.

(2) Any information about registers given in a referenced section of ECDATA should be
ignored. This module does not provide registers.

2

- - - .4

NRL REPORT 8734

AT.NUM NUMERIC ABSTRACT DATA TYPES AND OPERATIONS

AT.NUM.I Introduction

A T.NUM. .I Overview

The type classes provided by this submodule give a means to represent and operate on physical
quantities (such as a speed or an angle) without stating or assuming particular units of measurement.
Conversion programs are provided to convert the entity to its real equivalent, given the unit of meas-
urement desired.

The notion of type classes and specific types is explaned in EC.DATA.I.2. The types provided by
this module, as well as the available units of measurement for each, are listed in Table AT.NUM.a.

Table AT.NUM.a - Types Classes and Associated Units

Type Class Unit Unit Meanings

accel fpss Feet per second per second
p Normal gravity acceleration

accel-vec

angle deg Degrees
cir Circles
rad Radians

Angles may also be converted to a
sine/cosine representation

angrate deghour Degrees per hour
radsec Radians per second

density slcuft Slugs per cubic foot

displacement b

distance ft Feet
nmi Nautical miles

pressure inhg Inches of mercury

speed fps Feet per second
fpm Feet per minute
knot Nautical miles per hour

velocity C

aaccel-vec is a three-dimensional vector that may be converted into components of type
accel.
bDisplacement is a three-dimensional vector that may be converted into components of
type distance.
cVelocity is a three-dimensional vector that may be converted into components of type
speed.

3

ILL

CLEMENTS, FAULK, AND PARNAS

Specific types in this module are characterized only by the range and resolution of all entities of
that type. Specific types are created via declarations. Each variable and constant must belong to a
specific type.

A T.NUM.1.2 Literals

A value for a scalar type provided by this module can be specififed by using a real literal and one
of the conversion programs that convert real values to numeric scalar abstract types. The syntax is:

< program-name, real-literal >

The syntax for real-literal is given in EC.DATA.1.3. The value thus specified is that which would be
returned by the program were the real given as the input parameter.

A value for a vector type can be specified similarly, by naming a program that produces a vector

from constituent scalars, which are specified as shown above. The syntax is:

< program-name, scalar-literal, scalar-literal, scalar-literal >

AT.NUM.2 Interface Overview

A TNUM.2.1 Declaration of Spec ic Types

The form is that of the + +DCLTYPE+ + program described in EC.DATA.2.1, with

pt as described there;
p2 a typeclass as described in AT.NUM.4;
p3 an attribute as described in AT.NUM.4;
p4 as described there; and
p5 a version as described in AT.NUM.4.

A T NUM.2.2 Data Declarations

AT.NUM.2.2.1 Declaration of Variables and Constants

The form is that of the + +DCLENTITY+ + program described in EC.DATA.2.2.1, with

pi and p2 as described there;
p3, if supplied, an attribute as described in AT.NUM.4; and
p4 and p5 as described there.

AT.NUM.2.2.2 Declaration of Arrays

The form is that of the + +DCLARRAY+ + program described in EC.DATA.2.2.2, with

pl and p2 as described there;
p3, if supplied, an attribute as described in AT.NUM.4; and
p4, p5, and p6 as described there.

A TNUM.2.3 Access Speed Ranking of Data

The ADT module can implement a "not-slower-than" relation between any two variables, con-
stants, or arrays. The form is that of the + + RANK-DATA+ + program described in EC.DATA.2.3.

4

L--- --

NRL REPORT 8734

A T.NUM.2.4 Operand Descriptions

All information in EC.DATA.2.4 applies, except for information concerning registers.

A T. NUM. 2.5 Transfer Operations

The form is that of the +SET+ program described in EC.DATA.2.5; pi and p2 must both
belong to the same type class.

A T.NUM.2.6 Numeric Operations

AT.NUM.2.6.1 Numeric Comparison Operations

All programs listed in EC.DATA.2.6.1 apply. Parameters pl, p2, and p4 (if given) must all
belong to the same type class. For operands of vector type classes, the following program effects apply:

+GT+ p3 - (pl - p2) is positive and NOT (pl - p2)*

+GEQ+ p3 = (p = p2)* OR (p1 - p2) is positive

+LT+ p3 = (p1 - p2) is negative and NOT (pl = p2)*

+LEQ+ p3 = (p1 = p2)* OR (p1 - p2) is negative

AT.NUM.2.6.2 Numeric Calculations

All programs in section EC.DATA.2.6.2 apply. The following parameter information applies:

Parameters

+ADD+ all operands belong to the same AT-provided type class
+ABSV+
+COMPLE+
+SUB+

+MUL+ one of pl or p2 real, the other two operands belong to the same
AT-provided type class; or,
p3 speed; one of pl and p2 timeint, the other accel; or

V p3 distance; one of p1 and p2 timeint, the other speed; or
p3 angle; one of pl and p2 timeint, the other angrate; or
p3 displacement; one of p1 and p2 timeint, the other velocity; or
p3 velocity; one of p1 and p2 timeint, the other accel-vec.

+DIV+ pl and p2 belong to same AT scalar type class and p3 real; or,
p1 and p3 belong to same AT-provided type class and p2 real; or,
pl speed, p2 timeint, p3 accel; or,
pl distance, p2 timeint, p3 speed; or,
pi angle, p2 timeint, p3 angrate; or,
p1 speed, p2 accel, p3 timeint; or,
p1 distance, p2 speed, p3 timeint; or,
pl angle, p2 angrate, p3 timeint; or,
p1 displacement, p2 timeint, p3 velocity; or,
p1 velocity, p2 timeint, p3 accel-vec.

p4 (if supplied) same type as p3
p5 (if supplied) same type as p3

*Equality is defined in EC.DATA.2.6.1.

..-.--.. .

I

CLEMENTS, FAULK, AND PARNAS

Program Effects

Any result of type angle is taken modulo 360 degrees.

+MUL+ For multiplying a velocity (accel-vec) by a timeint: p3 - a displacement (velocity) vector
with the same direction as the velocity (accel-vec), whose magnitude is equal to the
timeint multiplied by the magnitude of the velocity (accel-vec).

+DIV+ For dividing a displacement (velocity) by a timeint: p3 - a velocity (accel-vec) vector with
the same direction as the displacement, whose magnitude is equal to the magnitude of the
displacement (velocity) divided by the timeint.

Program effects for all other cases are defined in EC.DATA.2.6.2.

AT.NUM.2.6.3 Operations Converting from AT-Provided Scalar Types to Reals

Program name Parm type Parm info Undesired events

+ R_ACCEL FPSS+ pl:accel;I source %range exceeded%
+R_ACCEL_G+ p2:real;O destination

+RANGLEDEG+ pl:angle;I source
+RANGLE_CIR+ p2:real;O destination
+RANGLERAD+
+R ANGLE SIN+
+R_ANGLECOS+

+RANGRATEDEGHOUR+ pl:angrate;I source
+ RANGRATERADSEC + p2:real;O destination

+R_DENSITYSLCUFT+ pl:density;I source
p2:real;O destination

+RDISTANCEFT+ pl :distance;I source
+RDISTANCENMI+ p2:real;O destination

+RPRESSUREINHG+ pl:pressure;I source %range exceeded%
p2:real;O destination

+ R SPEED FPS + p1 :speed;I source
+RSPEED_FPM + p2:reaI;O destination
+R SPEEDKNOT+

Program Effects

Each program provides a real value in p2 giving the physical quantity of pl in the units abbreviated in
the name of the program. The unit abbreviations are define in Table AT.NUM.a.

6

NRL REPORT 8734

AT.NUM.2.6.4 Operations Converting from Reals to AT-Provided Scalar Types

Program name Parm type Parm info Undesired events

+ ACCEL_-R_-FPSS + pl:real;f source O/range exceeded%
+ACCELRG+ p2:accel;O destination

+ANGLE_-R_-DEG + pl:reall source
+ ANGLERCIR+ p2:angle;O destination
+ANGLERRAD+

+ ANGLE_-R_-SIN+ pl:real;l source %illegal sin
+ ANGLE_RCOS+ p2:angle;O destination or cos given%/

+ANGLERSINCOS+ pl:real;I sine of angle %range exceeded%/
p2:real,I cosine of angle
p3 :angle;,O destination

+ANGRATE_-RDEGHOUR+ pI:real;,I source
+ANGRATERRADSEC+ p2:angrate;O destination

+DENSITYRSLCUFT+ pl:real;I source
p2:density;O destination

+DISTANCE RFT+ pl:real;l source
+ DISTANCE7RNMI + p2:distance;O destination

+PRESSURE-RINHG+ pl:real;I source
p2:pressure;O destination

+SPEEDRFPS + pl:real;l source
+SPEEDRFPM+ p2:speed;O destination
+SPEEDRKNOT+

Programn Effects

+ANGLERSINCOS+ Produces in p3 the angle whose sine and cosine are
equivalent to p1 and p2, respectively.

+ ANGLERCOS + Produces in p2 the angle between 0 degrees and
180 degrees, inclusive, whose cosine is p).

+ ANGLERSIN+ Produces in p2 the angle between -90 degrees and
+ 90 degrees, inclusive, whose sine is p1.

All other programs produce an AT-type value in p2 equivalent to p1, assuming that p1 represents a
physical quantity in the units abbreviated in the program name. The unit abbreviations are defined in
Table AT.NUMa. Results of type angle are given modulo 360 degrees.

7

CLEMENTS, FAULK, AND PARNAS

AT.NUM.2.6.5 Operations Converting from Vector Types

Program name Parm type Parm info Undesired events

+XYZVECTOR+ pI: ;i !+vector+! %range exceeded%

p2: ;0 '+X component+!

p3: ;O !+Y component+!
p4: ;0 !+Z component+!

+SPHERVECTOR + p1: ;I !+vector+! 0
p2: ;O !+magnitude+!
p3:angle;O !+theta+!
p4:angle;O !+phi+!

+CYLVECTOR+ pl: ;I !+ vector +!
p2: ;O !+radius+!
p3:angle;O ! + theta +!
p4: ;0 !+Z component+!

Parameter Requirements

+XYZ VECTOR+ p1 velocity, and p2 , p3, p4 speed; or,

pl displacement, and p2, p3 , p4 distance; or,
pI accel-vec, and p2, p3, p4 accel

+SPHERVECTOR+ pl velocity, and p2 speed; or,

p) displacement, and p2 distance; or,
p1 accel-vec, and p 2 accel

+CYLVECTOR+ pl velocity, and p 2 and p4 speed; or,

pl displacement, and p2 and p4 distance; or,
p1 accel-vec, and p2 and p4 accel

Program Effects

All programs produce component equivalents from the given vector. No coordinate system frame of
reference is assumed by this module; the frame of reference that users employed to initialize the vector

will be the one to which the components correspond.

I
+XYZ VECTOR+ p2, p3, and p4 are set to the x, y, and z Cartesian

components (respectively) of the vector given by pl.

+SPHERVECTOR+ p2, p3, and p4 are set to the spherical coordinate
components of the vector given by pl.

+CYLVECTOR + p 2 , p3, and p4 are set to the cylindrical coordinate
components of the vector given by pl.

T

NRL REPORT 8734

AT.NUM.2.6.6 Operations Converting to Vector Types

Program name Parm type Parm info Undesired events

+VECTORXYZ+ pl:_l !+X component+! %range exceeded%
p2:_;[!+Y component+!
p3: jI !+Z component+!
p4:;0 ! +vector+!

+ VECTORSPHER + p1 :_l !+ magnitude +!
p2:angle;1 ! + theta +!
p3:angle;l !+phi+!
p4:_;O ! +vector+!

+VECTORCYL+ p1:_,1 !+radius+!
p2:angle;I + theta +!
p3:;1I !+Z component+!
p4: ;O +vector+!

Parameter requirements

+VECTORXYZ+ pi, p2 p3 speed and p4 velocity; or,
p1, pA p3 distance and p4 displacement, or,
p1, p2 p3 accel and p4 accel-vec

+VECTORSPHER+ p1 speed and p4 velocity; or,
p1 distance and p4 displacement; or,
p) accei and p4 accel-vec

+VECTORCYL+ p1 and p3 speed, and p4 velocity; or,
p1 and p3 distance, and p4 displacement; or,
p1 and p3 accel, and p4 accel-vec

Program Effects

+VECTOR-XYZ+ p4 - the vector equivalent of p1, p2, and p3,
assuming a Cartesian coordinate system.

+VECTOR-SPHER+ p4 - the vector equivalent of p1, p2, and p3,
assuming a spherical coordinate system.

+VECTOR-CYL+ p4 - the vector equivalent of p1, p2, and p3,
assuming a cylindrical coordinate system.

AT.NUM.3 Undesired Event Assumptions

See EC.DATA.3. All Undesired Event assumptions there apply, except for those that explicitly
mention bitstrings, registers, or time intervals. In addition:

I . User programs will not provide a real with magnitude greater than I to represent a sine or
a cosine of an angle.

9

CLEMENTS, FAULK, AND PARNAS

AT.NUM.4 Local Type Definitions

Local types used in the description of programs specified in EC.DATA are defined in Section
EC.DATA.4, except for the following:

attribute An ordered triple of numeric entities specifying
lower bound, upper bound, and resolution.

type class Enumerated: accel, accel-vec, angle, angrate,
density, displacement, distance, pressure, speed, or
velocity.

version A version name applicable to the given type class.
Version names and characteristics are listed in
Appendix 5.

AT.NUM.5 Dictionary

Dictionary terms used to described programs specified in EC.DATA are defined in Section
EC.DATA.5. The following terms are introduced by this module:

!+magnitude +! The scalar magnitude of the vector; the distance
between the end of the vector and the origin of the
coordinate system.

!+ phi +! In spherical coordinates, the angle between the
vector and positive z axis; sign of the angle is the
sign of the vector's z component.

!+ radius+! The distance from the origin to the end of the
projection into the x-y plane of the vector.

!+theta+! The angle from the positive x axis to the projection
of the vector into the x-y plane; the angle is
measured counterclockwise as seen looking into the
x-y plane in the negative z direction.

+vector + The vector type class equivalent of the given
components.

!+X component+! The x component of the given vector.

+ Y component+! The y component of the given vector.

+Z component+! The z component of the given vector.

AT.NUM.6 Undesired Event Dictionary

Undesired events described in programs specified in EC.DATA.2 are defined in Section
EC.DATA.6. In addition:

to

....

NRL REPORT 8734

%range exceeded% Defined in EC.DATA.6

%illegal sin or cos given% User has supplied a sine or cosine with
magnitude greater than I.

AT.NUM.7 System Generation Parameters

None

AT.NUM.8 Information Hidden

1. The representation of numeric objects.

2. How range and resolution information are used to determine representation.

3. The procedures for performing numeric operations.

4. Conversions required, if two objects of the same type or type class are not represented in
the same way.

1i

k 1"-'------

"
" --

...

.

CLEMENTS, FAULK, AND PARNAS

AT.STE STATE TRANSITION EVENT TYPE CLASS

AT.STE.! Introduction

A T.STE. 1.1 Overview

This module implements State Transition Event (STE) types. Users may define specific types of
this type class and declare entities of those types.

Each STE type is a class of equivalent finite state machines. The value of an STE variable is its
state. Each STE type is characterized by a set of states, named subsets of that set, named relations on
that set, and state transition events. It is intended that this module be used only when the number of
states is small enough that the attributes of the type can be described by enumeration.

The relations may be used either to specify conditions relating two entities of the same STE type
or to describe state transitions.

This module provides facilities that allow a process to await specified conditions and transitions.
Awaiting a state transition event suspends the process until the event occurs. Awaiting a condition
suspends the process until the condition holds.

AT.STE.1.2 Literals

Literals are state names and must begin and end with the character "$".

AT.STE.2 Interface Overview

A T.STE.2.) Declaration of Specific Types

STE types are declared by use of the form of ++DCL TYPE++ (see EC.DATA.2.1). The
forms of the parameters for STE type declarations are given below.

Parameter Type Comments

pl name any unused name
p2 type class "STE"
p3 attributes see AT.STE.4
p4 binding all STE attributes must be fixed
p5 implementation omitted

Program Effects

In addition to defining a type, the STE + +DCLTYPE+ + operation causes a number of access
programs to be defined on elements of the type being declared. The syntax and semantics of these pro-
grams are discussed in AT.STE.2.5.

The following additional undesired events can occur in the declaration of STE types:

%%duplicate set member%%
%%malformed attribute%%
%%missing state attribute%%
%%too many state attributes%%
%%type inconsistency%%
%%undeclared spectype%%
%%unknown state%%

12

. -

NRL REPORT 8734

A T.STE. 2.2 Declaration of Variables and Constants

STE variables and constants are defined by using the form of ++DCL ENTITY+ + (see
EC.DATA.2.2). Parameter p3 (initial attribute) is omitted for STE type variables.

A T.STE.2.3 Declaration of Arrays

Arrays of STE type entities are defined by using the form of ++DCL ARRAY++ (see

EC.DATA.2.3). Parameter p3 (initial attribute) is omitted for STE type variables.

A T.STE.2.4 Operand Descriptions

See description in EC.DATA.2.4. Those portions of the description in EC.DATA.2.4 pertaining
to variables with varying attributes, and to registers, do not apply to this module.

The following additional undesired event can occur when operands are specified.

%%inappropriate parameters%%

A T.STE.2.5 Access Programs

The declaration of an STE type defines a number of access programs that operate on entities of
that type. For each attribute identifier that appears in a "conversion", "relation", or "set" attribute
declaration, an access program is defined having that identifier as its name. In addition, several addi-
tional access programs are defined whose names are systematically derived from the attribute identifiers.
For a given STE type declaration, the names of the access progams that are defined by that declaration
may be found by systematically replacing the strings 'set', 'relation', 'conversion]', and 'conversion2'
with the respective identifier of each set, relation, or conversion declaration of that type.

The following additional undesired event can occur when an STE access program is invoked.

%%unknown STE program%%

AT.STE.2.5.1 Operations on the STE Entities

Programn name Parm type Parm info Undesired events
+'set'+ pl:STEtype;I entity to test

p2:boolean;O destination

+IS-'relation'+ pl,p2:STEtype l pair to test %%unequal lists%%
p4:(parms);IOPT n-tuple
p3:boolean;O destination

+'relation'+ pl:STEtype;O domain elements %%unequal lists%%
p2:(parms) lOPT n-tuple %out of domain%

+'conversionl'+ pl:STEtype;l value to convert
p2:convtype;O destination

+'conversion2'+ pl:convtype;l value to convert
p2:STEtype ;O destination

13

N--

CLEMENTS, FAULK, AND PARNAS

Program Effects

+'set'+ p2 :- (p1 is an element of the set attribute whose
identifier is 'set')

+IS_'relation'+ p3 :- ((p4,pl),p2) is an element of the relation
attribute whose identifier is 'relation'. If p4 is
omitted, then p3 :- (pl,p2) is an element of 'relation'.

+'relation'+ p1 changes state to s2 such that sl is the value of pl
before the call, vI, ... , vn is the value of p2 (if
given), and the ordered pair (((vl, ... , vn),sl),s2) (or
(sl,s2) where p2 is omitted) is an element of the
relation attribute whose identifier is 'relation'.
Where there is more than one ordered pair with the same
first element, any may be chosen.

+'conversionl'+ p2 :- x such that (pl,x) is an element of a conversion
relation, and 'conversionl' is the first of the ordered
pair of identifiers associated with that conversion
definition.

+'conversion2'+ p2 :- x such that (x,pl) is an element of a conversion
relation, and 'conversion2' is the second of the ordered
pair of identifiers associated with that conversion
definition.

AT.STE.2.5.2 Await Operations

In this section "AWAIT.T/F.'string' stands for two names, "AWAIT.T.'string ' and
"AWAIT.F.'string ~ . Similarly, in the effects section, alternate phrasing for each member of the pair is
separated by "I".

Program name Parm type Parm info Undesired events

+AWAIT@'relation'+ pl:STEtype;! variable to watch
p2:(parms);I_OPT n-tuple

+AWAIT@ -'relation'+ pI:STEtype;I variable to watch
p2:(parms);lOPT n-tuple

+ AWAIT.T/F.'set'+ pl :STEtype;I candidate member

+ AWAIT.T/F.'relation'+ pl,p2:STEtype;l candidate pair
p3: (Parms);IOPT n-tuple

Program Effects
+AWAIT@'relation'+ Let p2' be the value of parameter(s) p2. Then, all

action in the calling process is suspended until pI
undergoes a state change from sl to s2 such that the
ordered pair ((p2',sl),s2) (or (sls2) if p2 is
omitted) is an element of the relation attribute whose
identifier is 'relation'.

14

NRL REPORT 8734

+AWAIT@ ='relation'+ If p2 is omitted, then all action in the calling
process is suspended until the access program
+'relation'+ (pl) is e,.cuted. Otherwise, let p2' be
the value of p2. Then all action in the calling
process is suspended until the access program
+'relation'+ (pl,p2) is executed with p2-p2'.

+ AWAIT.T/F.'set'+ If the value of pl is/(is not) a member of the set
attribute whose identifier is 'set', the call has no
effect. Otherwise, all action in the calling process
is suspended until the value of pl is/(is not) a
member of 'set'.

+AWAIT.T/F.'relation'+ Let p3' be the value of parameter(s) p3. Then, all
action in the calling process is suspended until the
ordered pair of values given by ((p3',pl),p2) (or
(pl,p2) if p3 is omitted) is/(is not) a member of the
relation attribute whose identifier is 'relation'. If
the ordered pair of values is/(is not) already a
member of 'relation', the call has no effect.

AT.STE.3 Undesired Event Assumptions

1. Users wi, not supply an argument to a conversion outside of the domain of the defining
q relation.

AT.STE.4 Local Type Definitions

Local types that are used in the description of programs specified in EC.DATA and are not
described here are defined in Section EC.DATA.4. In the following definitions, where the syntax is
given in modified BNF, alphabetic strings contained in quotation marks (e.g., "state") are terminal sym-
bols. Ellipses (e.g., state. state) denote a list of two or more elements separated by commas,

attribute The attributes of an STE type characterize the type.
The syntax of an STE type attribute is,

- ("state" (state list)
o2 ("relation" (relationdefn))
Z ("set" (setdefn))
or ("conversion" (conversion defn))

An STE type declaration must have exactly one "state"
attribute. There may be any number of the remaining
attributes.

attributes attribute or attribute, attributes.

convtype An entity of the specific type specified in the
conversiondefn.

conver.siondefn A 1:1 mapping between a subset of the states of an STE
type and a set of literals of another type. The
syntax is,

15

CLEMENTS, FAULK, AND PARNAS

:: = (ID,ID), type_ID (sl,tl)
or (ID,ID), type_ID ((sl,tl). (sn,tn))

where type ID is the identifier of a specific type.
each of the subsequent ordered pairs must be of the
form:

(STE literal, x) or ((STE literal .. STE literal), x)

where x is a literal or constant of typeID. The
ordered pair (ID,ID) identifies the conversion
programs from the STE type and to the STE type,
respectively.

ID An identifier associated with an STE attribute.

parms A list of entities separated by commas. The number of
entities and their types must match those of the
n-tuple "P" in the corresponding relationdefn.

relation defn A set of ordered pairs of the form ((P,D),R) where
(P,D) is an element of the domain of the relation

being defined and R is an element of the range. D and
R must be m-tuples of elements of the state set. P
may be an n-tuple of literals of any type. P may be
omitted in which case, the ordered pairs are written
(D,R). The syntax is,

::- ID (ordered-pairs)

ordered pairs ::- (domain, state list)
or (domain, state list) . (domain, state-list)

domain ::- state-list
or (literals, state list)

literals ::- literal
or (literal, . . . , literal)

The relation "EQ" is automatically defined for all STE
types. It is defined as the set of ordered pairs
(s,s) where s is an n-tuple of elements of the state
set.

The relation "SET" is automatically defined for all
STE types. It is defined as the set of all ordered
pair ((s2,sl),s2) where sl and s2 are lists of
elements of the state set.

set defn A subset of the set of states of the STE type being
defined or a subset of the power set of the set of
states. The syntax is,

::- ID, state list

or ID (state_list, . . . , state list).

state An STE literal (i.e., state name).

16

L

NRL REPORT 8734

state-list state or (state. state)

STE type An entity of the STE type for which the operation is
defined or a list of such entities enclosed in
parentheses and separated by commas.

AT.STE.5 Dictionary

None.

AT.STE.6 Undesired Event Dictionary

%%duplicate set member%% A user program has specified a set with
duplicate elements.

%%inappropriate parameters%% A user program has called an access program
with parameters that do not correspond in
specific type to the declaration.

%%malformed attribute%% The user has supplied an attribute
declaration with a syntax inconsistent with
that specified in AT.STE.4.

%%missing state attribute%% A user program has declared an STE type with
no "state" attribute.

%out of domain% A user program has supplied an input
parameter that is not in the domain of the
relation.

%%too many state attributes%% A user program has declared an STE type with
more than one "state" attribute.

%%type inconsistency%% A user program has supplied a conversion
value not of the specified type.

%%undeclared spectype%% A user program has specified a specific type
that has not been defined.

%%unequal lists%% A user program has supplied a list parameter
that does not match the specified length.

%%unknown state%% A user program has provided a state value
that has not been declared in the "state"
attribute.

%%unknown STE program%% A user program has specified an STE program
that does not correspond to any attribute
identifier that has been defined for the
type.

17

i i i, ,A

CLEMENTS. FAULK, AND PARNAS

AT.STE.7 System Generation Parameters

None.

AT.STE.8 Information Hidden

1. Internal representation of states, sets, and relations.

2. Algorithms used in the programs corresponding to AT attributes.

3. How processes await a state transition event and how they are restarted.

18

!

, .i- - '7 -S

NRL REPORT 8734

AT.INDEX INDICES TO THE DOCUMENT

This section provides the following indices to the facilities described in this document:

Access Programs

Local Type Definitions

Dictionary Terms

Undesired Events

Facilities specified in tECd are not included in this index.

Access Programs

Program name Where defined

+ ACCELR FPSS + AT.NUM
+ ACCEL R G+ AT.NUM
+ANGLERCIR+ AT.NUM
+ ANGLER-COS+ AT.NUM
+ANGLE-RDEG+ AT.NUM
+ANGLE-RRAD+ AT.NUM
+ANGLERSIN+ AT.NUM
+ ANGLE-RSINCOS + AT.NUM
+ANGRATE RDEGHOUR+ AT.NUM
+ ANGRATERRADSEC + AT.NUM
+CYLVECTOR+ AT.NUM
+ DENSITY R SLCUFT + AT.NUM
+ DISTANCERFf + AT.NUM
+ DISTANCERNMI+ AT.NUM
+ PRESSURE RINHG + AT.NUM
+RACCEL PSS + AT.NUM
+R_ ACCEL G+ AT.NUM
+ RANGLECIR+ AT.NUM
+RANGLECOS+ AT.NUM
+R-ANGLEDEG+ AT.NUM
+RANGLERAD+ AT.NUM
+R-ANGLE7SIN+ AT.NUM
+R ANGRA TEDEGHOUR+ AT.NUM
+RANGRATERADSEC+ AT.NUM
+RDENSITYSLCUFT+ AT.NUM
+R DISTANCEFT+ AT.NUM
+R-DISTANCENMI+ AT.NUM
+RPRESSURE INHG+ AT.NUM
+RSPEED 17PM11+ AT.NUM
+ RSPEEDFPS + AT.NUM
"+RSPEEDKNOT + AT.NUM
+SPEED-RFPM+ AT.NUM
+SPEED-RFPS+ AT.NUM

19

CLEMENTS, FAULK, AND PARNAS

+SPEED RKNOT+ AT.NUM
+ SPHER VECTOR + AT. NUM
+VECTOSRCYL+ AT.NUM
+ VECTOR SPHER + AT.NUM
+VECTOR7XYZ+ AT.NUM
+XYZ-VECTOR+ AT.NUM

In addition, AT.STE allows the user to define access programs of the following form:

+ AWAIT@ relation +
+ AWAIT@ -relation +
+AWAIT.T/F.set+
+ AWAIT.T/F.relation +
+conversionlI +
+conversjon2 +
+ relation + (4 parameters)
+ relation + (2 parameters)
+ set +

Local Type Definitions

Type name Where defined
accel AT.NUM
accel-vec AT.NUM
angle AT.NUM
angrate AT.NUM
attribute AT.NUM, AT.STE
attributes AT.STE
convtype AT.STE
conversion defn AT.STE
density AT.NUM
displacement AT.NUM
distance AT.NUM
parms AT.STE
pressure AT.NUM
relation defn AT.STE
set defn AT.STE
speed AT.NUM
state set AT.STE
STEtype AT.STE
STEtype list AT.STE
typechas AT.NUM
velocity AT.NUM
version AT.NUM

Dictionary Termas

Term Where defined

!+magnitude +! AT.NUM
!+phi+! AT.NUM
+ radius +! AT.NUM
'+theta +! AT.NUM

20

NRL REPORT 8734

!+vector +! AT.NUM
!+X component+! ATNUM
'+Y component+! ATNUM
'+Z component+! ATNUM

Undesired Events

UE name Where defined

%%duplicated set member%% AT.STE
%illegal sin or cos given% AT.NUM
%%inappropriate parameters%% AT.STE
%%malformed attribute%% AT.STE
%%missing state attribute%% AT.STE
%out of domain% ATSTE
%range exceeded% ATNUM
%%too many state attributes%% AT.STE
%%type inconsistency%% ATSTE
%%undeclared spectype%% ATSTE
%%unequal lists%% AT.STE
%%unimplemented binding%% Appendix 4
%%unimplemented attribute

via variables%% Appendix 4
%%unknown state%% ATSTE
%%unknown STE program%% AT.STE

21

CLEM1ENTS, FAULK, AND PARNAS

ACKNOWLEDGMENTS

The authors gratefully acknowledge the following people who reviewed this document for con-
sistency, clarity, and correctness:

Ms. Dawn Janney Naval Weapons Center, China Lake, CA
Ms. Jo Miller

Dr. Don Utter Bell Laboratories, Columbus, OH

Mr. Glenn Cooper Vought Corporation, Dallas, TX

Prof. Michael Levy Department of Computer Science
University of Victoria
Victoria, British Columbia

REFERENCES

[DI] Parker, Heninger, Parnas, and Shore, Abstract Interface Specifications for the A-7E Device Interface
Module; NRL Memorandum Report 4385; November 1980.

[EC] Britton, Clements, Parnas, and Weiss; Interface Specifications for the SCR (A-7E) Extended Com-
puter Module; NRL Memorandum Report 4843; May 1982.

[SO] Software Cost Reduction Project; A Standard Organization for Abstract Interface Specifications; NRL
Memorandum Report in progress. Until publication, readers are referred to the "Standard Organi-
zation," chapter of [DI] instead.

22

rw

.

Appendix 1

INTERFACE DESIGN ISSUES

AT.NUM

1. Although AT and EC designers are critically concerned with which facilities are machine-
dependent and which are not, we felt that users of the resulting modules would not be as con-
cerned. Therefore, we tried to design this module so that users could regard it as an extension to
the Extended Computer; the AT and EC in conjunction provide the basic programming environ-
ment for the rest of the system. We tried to make the design as parallel to EC.DATA as possible,
in order to present in effect a single kind of interface to programmers interested in manipulating
data of any type.

2. We thought that i'egisters for abstract data types would not be useful. If they turn out to be desir-
able, however, the facility would be a straightforward extension, based on the EC architecture.

3. Any design issue in EC.DATA concerning facilities or designs copied by this module naturally
also applies to this module.

4. We could have allowed a sine/cosine pair for an angle literal. However, to keep the interface sim-
ple and consistent, we do not allow literals to be given in this two-part manner.

5. We used to have an abstract data type called "mach", using it to represent a speed relative to the
speed of sound. But it produced so many hard questions (e.g., When you divide a speed by a
speed, do you get a real or a mach? How can you check at compile-time? If the speed you com-
pare with is the speed of sound at some other altitude/pressure/temperature, is the result a mach
or not?) that we decided it was not really an abstract data type like the others.

"4 AT.STE

1. Originally, the AT module included only the synchronization operations +SIGNAL+ for , -

ing the occurrence of events and +AWAIT+ for allowing processes to wait for the occufftlTZ of
events. These operations were chosen because they support the notion of events in "he OFP
specifications.

These operations originally were part of the EC interface. They were moved to the AT module
because (a) they can be constructed by using the +UP+, +DOWN+, and +PASS+ operations
provided by the EC; (b) the EC synchronization operations would not be made simpler by using
+AWAIT+ and +SIGNAL+; (c) we could think of useful systems that did not need
+AWAIT+ and +SIGNAL+; and (d) it made the EC interface simpler.

2. It was noted that, in some cases, processes needed to wait if the system was not in a particular
state but did not need to wait if the the system was already in the desired state. (Here and in the
following paragraphs, "state of the system" is used to mean a particular system state or a class of
such states.) Simple event variables could not be used in this case since the event associated with
the system entering a state would not be signaled until the state had been left and entered again.
To solve this problem, we added an additional event variable to the interface called, an "event

23

7..

CLEMENTS, FAULK. AND PARNAS

boolean" and an additional await operator. Processes could wait on the event of a state change in
an event boolean using the +AWAIT+ operator. The new operator, +AWAITC+ (await on
condition), caused the process to wait only if the event boolean was not in the specified state. If
the event boolean was already in the specified state, the calling process continued without inter-
ruption. This allowed processes to respond to an event that occurred while the process was active.
This facility was later superceded (see 4).

3. The specifications require that processes be able to wait on the occurrence of complex events, for
instance, the disjunction of two or more events or the occurrence of an event while the system is
in a particular state (i.e., @T(event) WHEN (condition AND condition AND ...)). Complex
synchronization conditions could not be implement directly with even booleans, so we attempted
to provide a syntax for expressing complex events and a synchronization mechanism for interpret-
ing that syntax. Users of the synchronization module would express the complex event for which
they wanted to wait in the syntax provided by this module. The module would interpret the
requests, translate them into more primitive synchronization operators, and signal the appropriate
events.

This scheme proved inadequate for several reasons. The synchronization module proved to be
large and complicated. The interpretation mechanism was complex and difficult to implement.
The proposed mechanism still did not solve all of the problems associated with waiting for com-
plex events:

a. If user processes were awaiting a disjunction of events, they could not distinguish which
event had been signaled. Processes could not perform conditional actions based on the
awakening event without checking the values of extra variables. Even with very short
deadlines, these values could change before they were checked.

b. Processes waiting on events with WHEN clauses frequently needed to know if the condi-
tions expressed in the WHEN clause still held by the time they began running. These
processes would have to recheck the condition values after they began running.

c. Since the events that processes awaited did not necessarily reflect the state of the system
by the time they began running, the order in which these events had occurred could not
necessarily be determined. Processes that needed to run in a particular order depending
on the order of events were not able to do so.

By using even variables and event booleans, these problems could be solved only by providing
great numbers of small short-deadline processes that recorded the occurrences of events in local
variables.

4. STE variables were proposed as a replacement for event variables and event booleans. Users can
define event variables with more than two states and can wait on state change events or transitions
between states. This mechanism allows us to solve those problems listed in 3, where the class of
states is small enough to describe by enumeration and the transition time between states is large
enough that the changes can be recorded by the event detection mechanism- for instance:

a. Event booleans are unnecessary since they can be implemented with STEs.

b. STEs provide a single mechanism for signaling transitions in variables with more than two
discrete states.

24

- i

NRL REPORT 8734

c. A syntax for expressing awaits on complex events is unnecessary. A state of an STE vari-
able can be associated with the occurrence of a complex event, and the user process need
only wait on the transition to that state.

d. User processes can wait on a disjunction of events and determine which event caused the
signal by examining the value of an STE variable.

e. STEs can record the "history" of events in their transitions. In those cases where the his-
tory can be represented by an enumerated set of states and transitions, STEs allow the
user processes to respond to events in the order of their occurrence and to events that
have occurred while they were running. Additional processes need not be created to per-
form these tasks.

f. Processes can signal different events to different users by causing a transition in a single
STE variable.

5. Originally, the STE module provided comparison operators for STE values and set membership
operators and conversion operators. We found that users of the module frequently only needed a
small subset of the operations provided. By allowing the creator of the STE type to define the
operations needed, the required subset of operations can be selected without incurring overhead
for unneeded ones.

6. Originally the STE module provided for one explicit ordering on a given STE domain. The com-
parison operators provided referred to that ordering. We decided that such an ordering was
unnecessary as it can be implemented as a special case of a relation.

I

~25

* -_ _ _

Appendix 2

IMPLEMENTATION NOTES

AT.NUM

None.

AT.STE

None.

26

Appendix 3

BASIC ASSUMPTIONS

AT.NUM

All basic assumptions in EC.DATA.3.1 apply, except those that explicitly mention bitstrings,
registers, or time intervals. Where an EC.DATA assumption mentions the Extended Computer or EC,
readers of this module should substitute "Application Data Types module" or "AT," respectively. In
addition, the following assumptions apply to this module:

1. For each scalar type class provided, there is a fixed set of units of measurement into which values
of that class may be converted. The units for each type class are listed in Table AT.NUM.a.
Values of vector type classes may be converted into component scalar values, or a
direction/magnitude equivalent.

2. User programs may not make assumptions about the representation of numeric values. Even
though literals are expressed in particular units, there is no implication that the value is stored in
those units.

3. The only operations needed for calculating new numeric values are: addition, multiplication, divi-
sion, subtraction, absolute value, and complement. In addition, we need to convert scalars
to/from reals, and vectors to/from component scalars.

4. We need arrays of numeric data types in which the attributes of an element can change indepen-
dently of the attributes of other elements.

5. The range and resolution of each numeric variable can be determined at the time the system is
generated.

6. Arithmetic operations involving operands of different type classes may or may not have a useful
physical meaning. Those that do are: speed = distance/time, distance - speed*time, time -
distance/speed, angrate - angle/time, angle - angrate*time, time angle/angrate, accel -
speed/time, speed - accel*time, time - speed/accel, velocity - displ/time, displ -
velocity*time, time = displ/velocity, accel-vec - velocity/time, velocity - accel-vec*time, and
time = velocity/accel-vec.

Further, if a value of any type class is multiplied or divided by a real, the result has the same type
class.

AT.STE

I. State transitions may be considered to be instantaneous.

2. When processes need to wait for particular states to occur, they do not need to proceed while
waiting. The states for which the process is waiting can be determined before the process begins
to wait.

27

" -- -- " ilg f l III " 'I ik ,-I l = . - - -

CLEMENTS, FAULK, AND PARNAS

3. If a process is awaiting a state change, it need not proceed until the change occurs. The transi-
tions for which the process is waiting can be determined before the process begins to wait.

4. There is no need for a mechanism that allows a process to be started before the state or transition
that has been specified in an AWAIT operation has occurred.

2

Appendix 4

UNIMPLEMENTED APPLICATION DATA TYPE FACILITIES

Not all of the capabilities described in this report have been provided in the current version of the
implementation. A few facilities, which are not currently needed by the application program, have not
been implemented. An attempt to use an absent facility will result in an undesired event in the
development version. The unimplemented features are described below.

Feature: Specific types with attributes that can vary at
run-time

Where Described: AT.NUM.
Undesired Event: %%unimplemented binding%%.
Current Use: In the + +DCL TYPE+ + program, users may not declare the

binding of bitstring or timeint specific types to be
VARY. In the + +DCL ENTITY++ and + +DCLARRAY++
programs, users may not provide an initial attribute.

Feature: Using variables to specify attributes of a specific
type, or of a variable or array with varying attributes.

Where Described: AT.NUM.
Undesired Event: %%unimplemented attribute via variables%%.
Current Use: To specify an attribute (as defined in AT.NUM.4),

literals or constants must be used.

2

29

Appendix 5

DATA REPRESENTATION (VERSION) CATALOG

For some numeric data types, the Application Data Types module can provide more than one
kind of representation. The version has no effect on the outcome of an operation, but some versions
allow some operations to be performed more quickly than other versions.

The version catalog lists the provided version names for each AT data type which has more than
one version. When declaring a specific type, users may request a particular version by using these
names.

Users referred to the version catalog in Appendix 6 of [EC]. Versions of real types named there
are available from this module as well.

30

Li

